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Motivated by recent experiments on alkali gases in atom traps, a largely pedagogical account is given of the
implications of the existence of a single-particle Bose–Einstein condensate for the phenomenon of superfluidity.
The first conclusion is that, for alkalis in traps at the lowest temperatures, Bose–Einstein condensation coex-
ists with superfluidity. Both experimental evidence and basic microscopic theory are reviewed in this context,
with superfluidity in finite systems, quantized vortices and the threshold for breakdown of superfluidity all
being referred to. The contrast between liquid 4He below the � point and the alkali atom gases is then empha-
sized. Both exhibit superfluidity, but the manifestations of a Bose–Einstein condensate are quite different. For
the atomic vapours, near to 100% of the atoms are condensed at the lowest temperatures, whereas from (i)
neutron scattering and (ii) computer simulations in liquid 4He present evidence is that 7% is the condensate
fraction. This leads finally into a brief discussion of superfluidity without a condensate, with specific reference
to the two-dimensional Bose Coulomb gas. The main conclusion is that Bose–Einstein condensation and
superfluidity are distinct consequences of deeper topological properties of the many-body wavefunction.
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1. INTRODUCTION TO BASIC CONCEPTS OF BOSE–EINSTEIN

CONDENSATION AND SUPERFLUIDITY

The phenomenon of Bose–Einstein condensation (BEC) was predicted by Einstein [1,2]
in 1924–25 by extending to material particles Bose’s work on the statistics of photons:
there is no restriction on the occupancy of a single quantum state by bosons. For an
ideal gas in a box at temperature T¼ 0 in the rest frame the bosons can all condense
in the zero-momentum state and the macroscopic occupation of this state starts at a
critical temperature Tc given by

n �3dB

���
c
¼ 2:612 ð1Þ
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for bosons of spin zero. Here n is the particle density and �dB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2��hh2Þ=ðmkBTÞ

p
is the

thermal de Broglie wavelength, with m the particle mass, �hh Planck’s constant, and kB

Boltzmann’s constant. The relation (1) derives from the vanishing of the chemical
potential at Tc and implies that the de Broglie wavelength has become comparable
to the mean interparticle separation, so that quantum interference effects between the
particles are emerging.
The condensate fraction n0/n in the ideal Bose gas at T<Tc is

n0=n ¼ 1� ðT=TcÞ
3=2

ð2Þ

since �dB / T �1=2, and tends to unity for T ! 0. The concept of Bose–Einstein conden-
sation can be extended to an interacting Bose fluid: the effect of the interactions is
to correlate the motions of the particles and hence, by increasing the kinetic energy,
to cause a depletion of the condensate even at T¼ 0. The quantum depletion for a
weakly-coupled Bose gas with hard-core interactions was estimated by Bogoliubov
[3] to be

n0=njT¼0 ¼ 1� ð8=3
ffiffiffi
�

p
Þ

ffiffiffiffiffiffiffi
na3

p
: ð3Þ

Here a is the diameter of the hard core, and Eq. (3) holds as long as the dilution
condition

ffiffiffiffiffiffiffi
na3

p
	 1 is satisfied.

For a homogeneous interacting Bose gas a general definition of the condensate frac-
tion was given by Penrose and Onsager [4], who associated BEC with the emergence of
the off-diagonal long-range order in the one-body density matrix �ðx, x0Þ ¼ h�yðxÞ�ðx0Þi.
Here �y(x) and �(x) are field operators which create and annihilate a particle at x,
whileh� � �i represents an average on a suitably defined ensemble to take into account
the presence of the condensate (see e.g. Hohenberg and Martin [5]). The Fourier trans-
form of the density matrix with respect to the relative distance x� x0 gives the momen-
tum distribution n(p): therefore the condensate density, being determined by the particles
in the state of zero momentum, is given by

n0 ¼ lim
jx�x0 j!0

�ðx, x0Þ: ð4Þ

The particle density is instead given by

n ¼ lim
jx�x0j!0

�ðx, x0Þ: ð5Þ

A very clear physical example of BEC is provided by the recent experiments on
metastable vapours of alkali atoms inside magnetic or optical traps [6]. As a result of
several cooling stages by a combination of laser light and magnetic fields, macroscopic
occupation of the lowest level of the harmonic trap was first observed in 1995 as a
sudden appearance of a high peak at the center of the density profile of the cloud.
Such a dramatic evidence of the condensate is due to the inhomogeneity of the confining
potential, which drives the condensate to the center of the trap and allows one to
observe ‘‘real space’’ condensation.
The origin of the concept of superfluidity lies in the experiments on liquid 4He [7],

which we summarize briefly here. While just below its boiling point 4He behaves as
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an ordinary fluid with low viscosity, it undergoes a liquid–liquid transition at 2.17K to
a different phase (HeII), the transition being signalled by a specific-heat anomaly whose
shape has led to the name �-line for the coexistence curve of the two phases. The HeII
phase was named ‘‘superfluid’’ to describe its peculiar behaviour in transport and exci-
tation experiments, such as non-Newtonian flow (‘‘fountain effect’’, discovered by
Allen and Misener [8]), propagation of heat waves (‘‘second sound’’, first observed
by Peshkov [9]) and sudden arrest of bubbling below the �-point (‘‘thermal supercon-
ductor effect’’, see for instance Lynton [10]).
Another classical experimental demonstration of superfluidity in liquid HeII is the

rotating-bucket experiment [11] first suggested by London (see also the review by
Fairbank [12]): on cooling a slowly rotating bucket of liquid 4He below the �-point,
the superfluid portion stops rotating and the bucket rotates faster and faster, since
only the normal component is dragged by friction with the rough walls of the container.
Similarly, in a classical experiment performed by Andronikashvili [13] in 1946 the effec-
tive density of the normal component was measured as a function of temperature from
the period of torsional oscillations (and hence the moment of inertia) of a pile of thin
metal disks, which were closely spaced to ensure that the normal fluid in the interstices
would be dragged along while the superfluid remains stationary. The experiment shows
that the superfluid fraction increases from zero at the �-point to essentially unity near
1K (see Fig. 1).

1.1. Phenomenology: The Two-fluid Model

These effects can be explained by viewing HeII as if it were a mixture of two fluids
(‘‘two-fluid model’’, proposed by Tisza [14] and Landau [15,16]): a normal fluid
which possesses Newtonian viscosity, and a superfluid which is capable of frictionless
flow through capillaries or past obstacles. A connection between superfluid behaviour
in HeII and BEC was historically proposed by London, by noticing the analogy in
shape between the specific-heat curves of 4He and of an ideal Bose gas, and that the
condition (1) for BEC would yield the correct order of magnitude for the critical
temperature heralding the superfluid phase.

FIGURE 1 Fractions of normal fluid and superfluid in liquid 4He as functions of temperature, from
Andronikashvili’s experiment.
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2. A MICROSCOPIC VIEW OF SUPERFLUIDITY

Given the assumption that the system has a condensate, i.e. that a single-particle state
with wavefunction �0(r, t) is macroscopically occupied, the conceptual basis of super-
fluidity can be simply understood in a dilute system (see e.g. Leggett [17,18]). We
write �0ðr, tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0ðr, tÞ

p
exp½i�ðr, tÞ�, where n0 and � are the local density and phase

of the condensate, and define the superfluid velocity vs(r, t) by the prescription

vsðr, tÞ ¼ ð�hh=mÞr�ðr, tÞ: ð6Þ

One immediate consequence of the definition (6) is that the superfluid flow is irrota-
tional. In addition, since there is no ‘‘ignorance’’ associated with the single quantum
state �0, the entropy has to be carried by the normal component, namely by particles
occupying states other than �0.
Furthermore, from the fact that �0 must be single-valued modulo 2�, one obtains the

Onsager–Feynman quantization condition [19,20] on superfluid circulation around a
closed circuit:

I
vs � d l ¼ qh=m, ð7Þ

where q is an integer number. If the superfluid sample is simply connected this
condition gives zero, while if vortices are present the superfluid is multiply connected
and Eq. (7) is a non-trivial statement: quantization of vortex lines is a peculiarity of
superfluidity and exhibits the intrinsically quantum nature of this phenomenon.
Experiments on HeII have shown that its vortex lines are indeed quantized [21].

2.1. Microscopic Definitions of Superfluid Density [22]

A first microscopic definition of the superfluid density ns can be obtained employing
a relation due to Josephson and Bogoliubov, which establishes the exact static long-
wavelength behaviour of the single-particle Green’s function G11(k,!):

G11ðk, 0Þ !k!0 n0m=ðns�hh
2k2Þ: ð8Þ

At long wavelengths the Green’s function is dominated by phase fluctuations: as we
shall see below these play a crucial role in reduced dimensionality. In three spatial
dimensions the phase–phase correlation function at equal times decays slowly at
large distances, thus ensuring the long-range off-diagonal order in Eq. (4).
A second microscopic definition of superfluid density (which may not necessarily

coincide with the previous one) comes from the theory of linear response. The current
response function, which gives the current density driven by an external field in the
linear regime, can be split into its longitudinal and transverse components (�L(k,!)
and �T(k,!), say). The density of the normal component of the fluid is given by

n� ns ¼ lim
k!0

Z
d!

2�

Im�T ðk,!Þ

!
: ð9Þ
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This sum rule complements the usual f-sum rule on particle conservation, which
states that

n ¼

Z
d!

2�

Im�Lðk,!Þ

!
: ð10Þ

The fact that the normal-fluid component alone fulfills the sum rule (9) is a microscopic
expression of the irrotationality of the superfluid component, as it is probed in a rota-
ting-bucket experiment. It is important to remark that Eq. (9) does not depend explicitly
on the condensate density. In Section 5 we will give examples of systems which exhibit
superfluid behaviour even in the absence of Bose–Einstein condensation.
It is also possible to provide a third definition of superfluidity by imposing suitable

boundary conditions on the many-body wave function (see e.g. Leggett [17]).

2.2. Landau Criterion for Breakdown of Superfluidity

Superfluid flow is experimentally observed in 4He only if the flow rate is lower than
a critical velocity vc at which viscous resistance suddenly appears [7]. The Landau
criterion for breakdown of superfluidity [16] states that viscosity starts during flow
when the creation of elementary excitations becomes energetically favourable. Let "p
be the energy of an elementary excitation with momentum p in the fluid at rest: if the
liquid is dragged with velocity v then Galileian invariance implies that the excitation
energy becomes "pþ p � v, which is negative when p and v are antiparallel and the velo-
city exceeds the critical value vc¼ "p/p. This implies spontaneous emission of excitations
during flow. If the elementary excitations are only of sound-wave type vc coincides with
the velocity of sound; in 4He however the excitation spectrum shows also a ‘‘roton’’
minimum, which accounts for the fact that the critical velocity becomes substantially
lower than the velocity of sound.

3. SUPERFLUIDITY IN ATOMIC BOSE–EINSTEIN CONDENSATES

Bose–Einstein condensates of alkali atoms are ultra-cold ðT ’ 0:1 mKÞ, rarefied
ðn ’ 1013 cm�3Þ clouds of gas contained in magnetic or optical traps. At low tempera-
tures (T	Tc) there is no discernible non-condensate component and practically all
atoms occupy the same quantum level: this implies macroscopic quantum coherence
as was verified in interference and Raman- and Bragg-scattering experiments.

3.1. s-Wave Scattering Length and Phonon Excitations

Interatomic interactions at such low temperatures and densities are dominated by binary
collisions in the s-wave channel, and the interparticle potential is well approximated by a
contact interaction determined only by the s-wave scattering length as (in the following
we shall consider the more common case as>0, i.e. repulsive interactions). The
atomic cloud is so rarefied that the diluteness condition

ffiffiffiffiffiffiffi
na3s

p
	 1 is well satisfied, imply-

ing that the mean interparticle distance is much larger than as. Under these conditions the
system at low temperatures is well described by the Bogoliubov theory for the weakly
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coupled Bose gas, which implies that the superfluid density coincides with the condensate
density. The spectrum of elementary excitations of the gas in the Bogoliubov theory is
phonon-like at long wavelength, with a velocity of sound given by cB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4��hh2asn

p
=m,

where m is the atomic mass. Thermal excitations with increasing temperature generate
a thermal cloud. A picture of a confined condensate and its thermal cloud, as in Fig. 2,
thus provides a good visualization of the components of the two-fluid model.

3.2. Superfluidity in Finite Systems [23]

Usually condensates are produced in magnetic traps whose bottom is well approxi-
mated by a harmonic potential. The effect of the inhomogeneity of the gas due to
the confinement must be taken into account in the theoretical description, leading to
quantization of the Bogoliubov sound waves and to new manifestations of superfluidity
such as the scissors modes, which are also known in nuclear matter.
Scissors modes in atomic gases are excited by a sudden rotation of the anisotropic

confining potential [24]. This perturbation gives rise to oscillations at a single frequency
in the case of a condensed (superfluid) cloud, but showing beats between two frequencies
for a non-condensed (normal-fluid) cloud. While only longitudinal modes can be
excited in a superfluid, both longitudinal and transverse modes are excited by the
applied perturbation in the normal fluid. This is, in essence, the equivalent of the
rotating bucket experiment for a confined superfluid.

3.3. Quantized Vortices

Vortices have been created in atomic condensates with different techniques: by stirring
the condensate with laser light or by exploiting interconversion between two compo-
nents of the condensate with different spins. Figure 3 reproduces three arrays of
vortices generated inside confined condensates in the work of the ENS group in
Paris [25]: a triangular array (middle image) is the lowest-energy configuration, but a
square pattern is also sometimes observed (right image).

FIGURE 2 Column density profiles for a Bose gas above (back image) and below (front image) the critical
temperature for Bose–Einstein condensation.
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Demonstrations that vortices are quantized have also been given. A method used
to this end is based on the idea that the presence of a single vortex line inside
the condensate breaks time-inversion symmetry and leads in particular to a splitting
of the quadrupolar surface modes of azimuthal quantum numbers m¼�2. As a conse-
quence, a slow precession is induced in a quadrupolar distortion of a condensate
containing a vortex at its centre. This can be used to reveal the formation of vortices
in an unambiguous manner and also to infer the quantum circulation of the vortex
[26]. As an alternative, an interferometric technique has been used to map the phase
profile of the condensate wavefunction in a path around the vortex [27].

3.4. Threshold for Breakdown of Superfluidity

The threshold for the breakdown of superfluidity has been investigated in various
experiments, probing the condensate both on a macroscopic and on a microscopic
scale.
Onofrio et al. [28] studied the hydrodynamic flow in a condensate stirred by a blue-

detuned laser beam acting as a macroscopic moving object. A density-dependent critical
velocity for the onset of a distortion in the density distribution was observed, the
distortion being associated with a pressure gradient arising from a drag force between
the beam and the condensate. The critical velocity observed was considerably smaller
than the local sound velocity, and it was demonstrated that it arises from the periodic
shedding of vortex lines at a rate that increases with velocity.
Microscopic probes colliding with a condensate were obtained by adding moving

impurities to it [29]. A dramatic reduction of the collision rate was measured when
the velocity of the impurity was reduced below the sound velocity, thus providing an
experimental test of the Landau criterion for superfluidity.
Breakdown of superfluidity and onset of decoherence have also been observed in

a condensate placed inside a magnetic trap with a superimposed optical lattice [30].
The dynamical evolution of the condensate was controlled by displacing the magnetic
trap by a variable amount�x in the direction parallel to the lattice. Different dynamical
regimes were observed depending on the magnitude of�x: while for small displacements
the condensate manifests its superfluid behaviour by performing undamped oscillations
in the harmonic well, at larger values of the displacement the onset of dissipative
processes is observed. The experiments in the dissipative regime can be interpreted in
terms of a density-dependent local critical velocity for the destruction of superfluidity
given by the local speed of sound, vcðxÞ /

ffiffiffiffiffiffiffiffiffi
nðxÞ

p
, thus obtaining a fully quantitative

and parameter-free account of data as is reported in Fig. 4.

FIGURE 3 Ordered arrays of vortices in a confined Bose–Einstein condensate of 87Rb atoms (from Chevy
et al. [25]).
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4. BOSE–EINSTEIN CONDENSATE IN LIQUID HELIUM:

HeII BELOW THE k POINT

As we have mentioned in Section 1, in liquid 4He superfluidity can be readily demon-
strated. However, because this is a strongly-interacting liquid, the condensate fraction is
found to be small, less than 10%.
In a homogeneous fluid the condensate fraction is extracted from the distribution

n(p) of single-particle momenta as it contributes with a peak at zero momentum,

nðpÞ ¼ n0
ðpÞ þ ~nnðpÞ ð11Þ

where ~nnðpÞ ¼
R
dr½�ðrÞ � n0� expðip � rÞ is the momentum distribution of the non-conden-

sate and �(r) is the one-body density matrix as a function of the relative coordinate r.
Equation (11) immediately yields Eq. (4), since n(p) is the Fourier transform of �(r).
According to Gavoret and Nozières [31], the condensate fraction also determines a
diverging behaviour of ~nnðpÞ at low momenta,

lim
p!0

p ~nnðpÞ ¼ n0mc=ð2�hhÞ ð12Þ

where c is the sound velocity of the fluid.
In the experiments the condensate fraction is obtained by neutron inelastic scattering

at high energy and momentum transfers [32]. The extraction of n(p) from the measured
scattered intensity depends on the experimental resolution and final-state interactions
which must be deconvoluted in data analysis. The most recent results on the condensate
fraction at T¼ 0 obtained by this method yield n0=n ¼ ð7:25� 0:75Þ%.
Numerical simulations have also been used to predict the condensate fraction and the

superfluid density [33]. At T¼ 0 variational methods, Green’s function Monte Carlo
and Diffusion Monte Carlo (DMC) methods have been used and are in reasonable
agreement with each other. At finite temperature the Path-Integral Monte Carlo
method has been widely employed to characterize the properties of superfluid 4He.

FIGURE 4 The fraction Ns/N of atoms remaining in the undistorted part of a Bose–Einstein condensate of
87Rb atoms driven by a harmonic force through a linear optical lattice, as a function of a maximum velocity
reached during motion in the periodic potential (from Burger et al. [30]).
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The most recent estimates for the condensate fraction at T¼ 0 by Moroni et al. [34]
using DMC yield no/n¼ 7.26%, which is in good agreement with the measured value.

5. SUPERFLUIDITY WITHOUT BOSE–EINSTEIN CONDENSATION:

THE TWO-DIMENSIONAL BOSE FLUID

Phase fluctuations are enhanced in low-dimensional Bose gases and in particular it is
easy to show that the ideal Bose gas in dimensionality D¼ 2 (2D) does not condense
at any finite temperature. We shall consider three different models for the interactions
in a 2D Bose gas: (i) a neutral Bose gas with hard-core interactions; (ii) a charged Bose
gas with e2/r interactions; and (iii) a charged Bose gas with ln(r) interactions. The latter
is a model for vortex fluctuations in superfluid or superconducting films [35]. For the
case of charged bosons we assume as is customary that they are immersed in a uniform
neutralizing background.
Absence of Bose–Einstein condensation in a 2D interacting Bose gas at finite tempe-

rature was rigorously proven by Hohenberg using a theorem due to Bogoliubov. He
showed that the assumption of long-range off-diagonal order, i.e. n0 6¼ 0, would lead
to an inconsistency through the following inequality for the momentum distribution
at low momenta:

~nnðpÞ � �
1

2
þ

mkBT

p2
n0

n
: ð13Þ

By requiring that the integral of n(p) should be finite (fixed by the particle density)
one sees that the only possibility to satisfy the above inequality is to assume that
n0¼ 0. This conclusion holds for the neutral and the charged Bose gases.
At zero temperature the picture depends on the type of interactions: for the case of the

charged Bose gas with ln(r) interactions Magro and Ceperley [36] have used a similar
inequality,

~nnðpÞ � �
1

2
þ

1

SðpÞ

n0

n
, ð14Þ

to rule out the presence of a Bose–Einstein condensate. This follows directly by noticing
that at low momenta the plasma excitations determine the behaviour of the static
structure factor S( p) as SðpÞ / p2=�, where � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ne2=m

p
is the plasma frequency.

In this system, therefore, the condensate is destroyed by the plasma density fluctuations
even at T¼ 0.
The same argument however does not hold for the charged Bose gas with e2/r inter-

actions, where SðpÞ / p3=2, nor for the neutral Bose gas with hard-core interactions,
where SðpÞ / p. In both cases Eq. (14) gives no inconsistency, and indeed a condensate
is found in these fluids at T¼ 0, as in the case of the ideal Bose gas.
Although a condensate is absent in the 2D interacting Bose fluid at finite temperature,

the system shows algebraic off-diagonal long-range order, i.e. the one-body density
matrix decays at large distances through a power law,

�ðrÞ � r��: ð15Þ
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This behaviour is determined by the phase–phase correlations, which decay logarith-
mically at large distances [37]. The resulting power-law decay of the density matrix is
illustrated for the ln(r) fluid in Fig. 5. In the other interacting 2D fluids it is useful
to invoke the concept of a quasicondensate, i.e. a condensate with a fluctuating
phase [37,38] .Of course, a real finite 2D system might show condensation if its size
is smaller than the phase correlation length.
It should be emphasized that interacting 2D fluids do show superfluidity: the transi-

tion is predicted to be of the Kosterlitz–Thouless type [39] and in a dilute system at low
temperatures the superfluid density can be estimated using the Landau formula,

ns

n
¼ 1�

1

nkBT

X
k 6¼0

k2

2m

expð�hh!k=kBTÞ

½expð�hh!k=kBTÞ � 1�2
: ð16Þ

This assumes damping of superfluid flow by emission of collective excitations with
dispersion relation !k [16].

6. SUMMARY AND FUTURE DIRECTIONS

We have considered in this article only bosonic single-particle condensates, but the
discussion could be extended to other related items such as molecular condensates,
condensation of excitons in semiconductors or of Cooper pairs in superconductors,
or the cross-over from the Bardeen–Cooper–Schrieffer theory of conventional super-
conductivity to the Bose–Einstein condensation of point-like particles. There also
currently is a remarkable effort devoted to the experimental and theoretical study of
atomic Fermi gases and boson-fermion mixtures, aimed at realizing novel superfluids
from fermion–fermion pairing.
There is now incontrovertible evidence, some of which has been reviewed in Section 3,

that Bose–Einstein condensation and superfluidity coexist in gases of alkali atoms

FIGURE 5 The one-body density matrix �ðrÞ=n as a function of distance r for a 2D Bose–Coulomb fluid
with interaction potential V(r)¼ e2ln(r/l0) at zero temperature. Left: for coupling strength
rs � ð2=�nl20 Þ

1=2
¼ 0:1, 0:2, 0:5 and 1 (from top to bottom). Right: the same numerical results are plotted in

a log–log scale (dots) and compared with analytic results from the correlation function of phase fluctuations
(straight lines).
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in traps. While this evidence comes dominantly from a variety of experiments, all the
major predictions of basic microscopic theory are upheld. A topic of great interest at
the time of writing concerns the transition from a superfluid to a dissipative regime,
either from a dynamical driving of a condensate through an optical lattice as reviewed
in Section 3.4 [30] or through the emergence of localization when the potential barriers
in an optical lattice or the strength of the repulsive interactions between the atoms are
increased [40]. The latter transition has been likened to the quantum phase transition
that occurs in a fluid of carriers from a coherent transport regime to a correlation-
induced Mott insulator state as may be described by means of a Bose–Hubbard
model [41]. Superfluidity in disordered media also presents great fundamental interest.
Most appealing are the current endeavours in the development of atom optics, which
are aimed towards the realization of ‘‘atom lasers’’ using matter waves.
When one turns to the area more briefly reviewed in Section 4, concerning liquid 4He

below the � line which was historically where the phenomenon of superfluidity was
discovered, the theory is less well developed at such a basic microscopic level. The
pioneering theoretical studies of Penrose and Onsager in 1956 already contained a
‘‘crude estimate’’ that 8% of the atoms are ‘‘condensed’’, and investigations in the
late 1990’s now arrive at 7%, both from neutron scattering (Glyde et al. [32]) and
from Diffusion Monte Carlo calculations (Moroni et al. [34]).
This prompts us to comment here, in regard to future directions for further studies

on superfluidity in dense quantum liquids, that it is hard to see how such a tiny con-
densate fraction could be responsible for the dramatic experimental manifestations of
superfluidity summarized in Section 1 above. Following Leggett we conclude that it
might be that both Bose–Einstein condensation and superfluidity are consequences
of deeper topological properties of the many-body wavefunction. As far as these may
transpire from numerical studies of the superfluid density and of the one-body density
matrix [33], superfluidity is associated with the growth of many-boson exchange
processes as temperature decreases, whereas increasing the particle density in a neutral
Bose fluid may depress the asymptotic value of the density matrix and hence the conden-
sate fraction.
But be that as it may, it seems of interest here to draw attention again to the potential

importance of the chemistry of small Helium clusters, and in particular of 4He2 and
4He3

for constructing such a (say variational) many-body ground-state wavefunction of liquid
4He. Such a discussion began in the 1980s [42–44] and its interest has been re-opened
by quite recent studies of helium dimers and trimers in free space. Thus Grisenti
et al. [45] have reported in the vapour, using a diffraction transmission grating technique,
the existence of a Helium dimer with a ‘‘bond length’’ of ’ 50 Å, and as a consequence a
very tiny binding energy. The He trimer in free space has also been identified experi-
mentally. Of course, no such free-space information can be quite decisive in regard to
the dense liquid. However, experience in nuclear physics with the ‘‘alpha particle’’
model points to the potential usefulness of building especially 4He trimers into a
ground-state many-body wavefunction for liquid HeII.
We have two final points to add, again for the future:

(i) As discussed by March and by Ghassib and Chester in the works quoted above, it
is possible in such a treatment of the ground state of liquid 4He that so-called
Efimov states [46] will play a role. These are states of a three-boson problem
when the dimer is either very weakly bound or just unbound. It is relevant in this
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context, though the system is different, to refer to the investigation of Bulgac [47] on
a quantum liquid droplet. He concludes, under some conditions for which the inter-
ested reader can refer to the original article, that the effect of three-body correlations
can be subsumed into the ground-state energy by using the Efimov states.

(ii) We gave an example in Section 5 of the two-dimensional ln(r) Bose gas in which
superfluidity can occur without Bose–Einstein condensation. This strongly moti-
vates, we feel sure, further work on low-dimensional quantum fluids, and in
particular the interest in re-opening the early work of Lieb and Liniger [48], with
attractive interactions leading to two- and three-body bound states. This may
very well prove a link between these points (i) and (ii), with which we conclude
this review.
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